
Biophysical Journal Volume 96 June 2009 4789–4803 4789
Electrohydrodynamic Model of Vesicle Deformation in Alternating Electric
Fields

Petia M. Vlahovska,†* Rubèn Serral Gracià,‡ Said Aranda-Espinoza,‡ and Rumiana Dimova‡

†Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; and ‡Max Planck Institute of Colloids and Interfaces, Potsdam,
Germany

ABSTRACT We develop an analytical theory to explain the experimentally observed morphological transitions of quasispher-
ical giant vesicles induced by alternating electric fields. The model treats the inner and suspending media as lossy dielectrics,
and the membrane as an impermeable flexible incompressible–fluid sheet. The vesicle shape is obtained by balancing electric,
hydrodynamic, bending, and tension stresses exerted on the membrane. Our approach, which is based on force balance, also
allows us to describe the time evolution of the vesicle deformation, in contrast to earlier works based on energy minimization,
which are able to predict only stationary shapes. Our theoretical predictions for vesicle deformation are consistent with experi-
ment. If the inner fluid is more conducting than the suspending medium, the vesicle always adopts a prolate shape. In the oppo-
site case, the vesicle undergoes a transition from a prolate to oblate ellipsoid at a critical frequency, which the theory identifies
with the inverse membrane charging time. At frequencies higher than the inverse Maxwell-Wagner polarization time, the electro-
hydrodynamic stresses become too small to alter the vesicle’s quasispherical rest shape. The model can be used to rationalize
the transient and steady deformation of biological cells in electric fields.
INTRODUCTION

Electric fields are widely used for cell manipulation. Weak

fields influence cell signaling, wound healing, and cell

growth (1–4). Strong pulsed fields can induce transient

perforation of the cell membrane, which enables the delivery

of exogenous molecules (drugs, proteins, and plasmids) into

living cells (4,5).

Biological cells exhibit various frequency-dependent

behaviors in alternating current (AC) electric fields: orienta-

tion, translation (dielectrophoresis), and rotation. These

phenomena have stimulated considerable modeling effort

aimed at understanding of the physical mechanisms of the

interaction of electric fields with cells and tissues. A common

theme among different theoretical models is the assumption

that the cell is a lossy dielectric particle of fixed shape

(a sphere (6,9) or an ellipsoid (10,11)). For example, the

orientation of cells can be predicted by considering the tor-

que on an ellipsoid due to the effective dipole moment

induced by the electric field (12,13); the dipole-based theory

has been successfully applied to interpret electro-orientation

of erythrocytes (14).

Cells, however, are soft objects, which deform when sub-

jected to electric fields. The cell membrane plays a critical

role in this process. For example, the shear elasticity of the

red blood cell membrane controls the cell electrodeformation
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(15–17). The lipid bilayer is the main structural component

of the cell membrane, yet, the electrodeformation of closed

pure lipid bilayer membranes (vesicles) has been considered

only to a limited extent (18–20). There is increasing interest

in this problem, particularly in relation to electropermeabili-

zation (21–27). Recent experiments have shown that vesicle

behavior in electric fields exhibits peculiar features. Vesicles

subjected to a direct-current electric pulse can deform into

elliptical (28) or cylindrical shapes (29). Alternating-current

electric fields deform vesicles into prolate or oblate ellipsoids

depending on the frequency and the conductivities of the

interior and suspending fluids (30–32).

The physical mechanisms responsible for vesicle electro-

deformations are not fully understood at this time. It is gener-

ally agreed that the prolate shape results from electrostatic

pressure that pulls the vesicle at the poles, where the electric

field is maximal. However, the oblate deformation, and in

particular the fact that it is observed only when the enclosed

fluid is less conducting than the suspending medium, has

eluded adequate explanation. It has been proposed that anisot-

ropy in the dielectric constant of the membrane is responsible

for the oblate shapes (33), but this model cannot explain the

experimentally observed dependence on the conductivity

ratio (30). Available theories do not account for the asymme-

try in the fluid conductivities, and predict only prolate shapes

(18–20). Moreover, these models employ an energy approach,

according to which stationary shapes are computed by mini-

mizing the sum of the membrane and electrostatic energies.

Recently, unusual transient shapes of vesicles subjected to

strong electric pulses have been observed (29). Explaining

their existence goes beyond the scope of the equilibrium

energy models. These transient features can be accounted

for only by means of a truly nonequilibrium mechanical
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approach, which is based on force balance. To the authors’

knowledge, there is only one attempt to describe vesicle

dynamics in electric fields (34). However, the model provides

little physical insight because membrane deformation is

described by a postulated ad hoc kinematic equation instead

of the actual force balance.

In this article, we develop a theoretical explanation of the

observed effects of AC electric fields on vesicle shapes. The

transient vesicle deformation is determined by evaluating all

forces (electric, hydrodynamic, bending, and tension) ex-

erted on the membrane (35). Our model is motivated by

the possibility for fluid flow driven by the electric field.

Free charges, e.g., ions, tend to accumulate at interfaces

separating media with different electric properties. The elec-

tric field acting on these free charges gives rise to fluid flow

relative to the interface (36,37). Electrohydrodynamic

(EHD) flows have been observed long ago with drops

(38,39), and only recently reported for vesicles (40). Drops

adopt oblate shapes solely due to the EHD flow, as illustrated

in Fig. 1. We propose that the EHD flow is also responsible

for the oblate vesicle shapes.

Notwithstanding the qualitative similarity between drops

and vesicles, the extension of the EHD model from drops

to vesicles is not a straightforward task because the

mechanics of lipid membranes is far more complex than

the mechanics of fluid-fluid interfaces. There are three major

challenges.

First, the lipid membrane is essentially an insulating shell

impermeable to ions. When an electric field is applied,

charges accumulate on both sides of the bilayer and the

vesicle acts as a charging capacitor.

Second, since the lipid bilayer contains a fixed number of

molecules the vesicle area is constant and the membrane is

area-incompressible. Under stress, the membrane develops

nonuniform tension, which adapts itself to the forces exerted

on the membrane in order to keep the local area constant. At

steady state, the gradients in tension counteract the flow-

inducing tangential electric force and the electrohydrody-

namic flow stops.

FIGURE 1 Illustration of the surface charge distribution and the stream-

lines of the electrohydrodynamic flow inside a drop (38,70) or a vesicle.

The corresponding direction of the tangential electric traction is denoted by

arrows. (a) Interior fluid less conducting than the exterior one, L/S < 1.

The resulting shape is oblate because the EHD flow pushes fluid toward the

equator; (b) interior fluid more conducting than the exterior one, L/S > 1.
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Third, lipid membranes are extremely soft and can be

easily bent by thermal noise. The area constraint implies

an effective or entropic tension for fluctuations (41). Defor-

mation of quasispherical vesicles in electric field results from

flattening of the shape undulations, which increases the

membrane tension (42). In strong electric fields, vesicle

deformation is in fact limited by the large membrane tension.

The theories based on the energy approach (20,33) omit the

tension and thereby exaggerate vesicle deformations (see the

supporting material in Aranda et al. (30). Our approach rigor-

ously accounts for these effects, and thus it is able to predict

vesicle deformations consistent with experiment.

The article is organized as follows: The Model describes

the physical model and formulates the governing equations;

Solution for Small Deformations outlines the solution and

discusses the frequency dependence of the electric stresses;

and Results shows the theory predictions and comparison

with experiment for the vesicle shape as a function of

frequency and conductivity ratio.

THE MODEL

The physical picture and characteristic timescales

Let us consider a giant vesicle with no net charge formed by

a membrane with conductivity lmm and dielectric constant

3mm. The bilayer thickness is h ~ 5 nm, thus on the length

scale of a cell-size vesicle (radius a ~ 10 mm) the bilayer

membrane can be regarded as a two-dimensional surface

with capacitance Cm ¼ 3mm/h and conductivity Gm ¼ lmm/h.

The vesicle is filled with a fluid of viscosity hin, conductivity

lin, and dielectric constant 3in, and suspended in a different

fluid characterized by hex, lex, and 3ex. The physical proper-

ties of the fluids and the membrane are assumed to be

frequency-independent.

The vesicle is subjected to a uniform AC electric field with

an amplitude E0,

EN ¼ E0 cosðutÞ; (1)

where u is the angular field frequency and t is the time.

When an electric field E(t) is applied to an electrolyte solu-

tion, the free ions move parallel to the field. The ion redistri-

bution leads to inhomogeneities in the bulk charge density,

which decay on a timescale (36,39)

tc;i ¼
3i

li

h
l2
D;i

D
; i ¼ in; ex; (2)

where 3 and l denote the absolute permittivity and conduc-

tivity of the fluid; lD
2 ¼ 3kBT/2e2C is the Debye length

(for a symmetric 1:1 electrolyte) and D is the electrolyte

ions diffusivity (43). Here C is the salt concentration, e is

the electronic charge, kB is the Boltzmann constant, and T
is temperature. Hence, for frequencies u < 2ptc

�1, the

bulk solution is electroneutral and free charges are present

only at boundaries that separate media with different electric
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properties. The rate of accumulation of charges at the inter-

face of a macroscopic object, e.g., a sphere, is given by the

Maxwell-Wagner polarization time (10)

tMW ¼
3in þ 23ex

lin þ 2lex

: (3)

The electric field acts on the free charges at the interface and

gives rise to a force, which is tangential to the interface. In

the case of a simple fluid-fluid interface, e.g., a drop, only

a hydrodynamic force can balance the shearing electric force.

As a result, the fluids are set in continuous motion, the so-

called electrohydrodynamic (EHD) flow (38). The EHD

flow is characterized by a timescale, which corresponds to

the inverse of the shear rate imposed by the tangential elec-

tric stress

tel ¼
hex

3exE2
0

: (4)

In the case of drops and quasispherical vesicles, the flow

inside is toroidal, with a direction either from or toward

the poles, depending on the surface charge distribution as

illustrated in Fig. 1.

The membrane represents a more complex boundary

compared to fluid-fluid interfaces.

First, it is an insulating shell and charges accumulate on

both the inner and outer surfaces, as illustrated in Fig. 2.

Hence, a vesicle of radius a acts as spherical capacitor that

charges on a timescale given by (44,45)

tcap ¼ aCm

�
1

lin

þ 1

2lex

�
: (5)

Second, the membrane mechanics is governed by resistance

to bending. A distortion of the membrane shape relaxes on

a timescale

FIGURE 2 Sketch of a vesicle in a uniform electric field. The zoomed

region of the interface illustrates the lipid bilayer structure of the membrane.
tk ¼
hexa3

k
; (6)

where k is the bending modulus. The curvature relaxation is

controlled by the viscosity of the suspending fluid. In

general, viscous dissipation takes place both in the embed-

ding liquid and in the membrane (46). The relative impor-

tance of the bulk and membrane dissipation mechanisms is

further discussed in Membrane Mechanics.

It is instructive to estimate the magnitude of the character-

istic timescales involved in vesicle electrodeformation.

Typical experimental conditions involve fluids with conduc-

tivities in the range l ~ 10�3–10�4 S/m and electric fields of

E ~ 1 kV/cm (19,29,30,47). In physiological conditions, e.g.,

blood, the internal conductivity of an erythrocyte is much

higher, at ~0.5 S/m (14). The typical size of a vesicle or

cell is a ~ 10 mm. The inner and outer fluids are essentially

water: viscosity h ~ 10�3 Pa.s, and density r ~ 1000 kg/

m3. The membrane capacitance is Cm ~ 10�2 F/m2 (48)

and bending rigidity k ~ 10�19 J. Therefore, for vesicles,

we estimate the basic charging time and the Maxwell-Wag-

ner polarization time tc ~ tMW ~ 10�7 s, the membrane

charging time tcap ~ 10�3 s, the electrohydrodynamic time

tel ~ 10�3 s, and the bending relaxation time tk ~ 10 s.

We see that vesicle dynamics in electric fields involves

processes that occur on very different timescales. Vesicle

deformation takes place concurrently with fluid motion.

The electric field adjusts to a new boundary configuration

much faster than the fluid moves, because conduction (and

hence charge redistribution) is fast, tMW << tel. Based on

the timescale separation, we can assume the electric field

to be quasistatic and dependent only on the instantaneous

vesicle shape. The flow timescale is comparable to the capac-

itor charging time, tel ~ tcap. The interplay between these two

timescales is responsible for the observed dynamics of vesi-

cles in electric fields (30).

Governing equations

In essence, our model consists of conservation of current,

which obeys Ohm’s law, and the Stokes equations to

describe fluid motion (36). Charges carried by conduction

accumulate at interfaces, and bulk phases become electro-

neutral on a very fast timescale given by tc (Eq. 2). Accord-

ingly, the equations of bulk fluid motion have no electric

terms and the electromechanical coupling occurs only at

boundaries.

Electrohydrodynamic problem

Electric field. The electric potential, F, for a quasistatic elec-

tromagnetic field is the solution of the Laplace equation

V2F ¼ 0; E ¼ �VF: (7)

The membrane acts as a capacitor. Accordingly, the potential

undergoes a jump across the interface of

Fin � Fex ¼ DFðu; tÞ at r ¼ rs; (8)
Biophysical Journal 96(12) 4789–4803
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where r¼ rs denotes the position of the interface in a coordi-

nate system centered in the vesicle (see Fig. 2). The relation

between the transmembrane potential and the membrane

capacitance depends on geometry. The spherical shell is

a widely used model for cells and vesicles (8,44), although

a spheroidal geometry has also been considered (10).

Free charges at the interface cause a discontinuity in the

normal component of the displacement vector

n ,
�
3exEex � 3inEin

�
¼ Qðu; tÞ at r ¼ rs; (9)

where n is the outward unit normal vector and Q is the free

charge density. Neglecting effects of charge convection

along the surface by fluid motion, the conservation of electric

currents at the interface requires that

n ,
�
lexEex � linEin

�
¼ �vQ

vt
at r ¼ rs: (10)

The forces due to an electric field E are calculated from the

Maxwell stress tensor

Tel ¼ 3

�
EE� 1

2
E2I

�
; (11)

where I denotes the unit tensor. A harmonic electric field can

be written as

EcosðutÞ ¼ 1

2
ðE þ E�Þ; (12)

where the superscript * denotes a complex conjugate. It gives

rise to a nonzero time-averaged component of the Maxwell

stress tensor

TelðuÞ ¼ 1

4

�
EE� þ E�E�

��Ej2I
�
; (13)

which is responsible for the steady deformation of the

vesicle.

All electric variables (electric field, potential, charge density)

vary harmonically with time uðr; t;uÞ ¼ uðr;uÞexpðiutÞ.
Hence, hereafter unless specifically stated, we will always

refer to the amplitude of an electric variable, uðr;uÞ, and

we will omit the bar for convenience.

Hydrodynamic field. Vesicle deformation is accompanied by

motion in the surrounding fluids. The fluid velocity, v, and

pressure, p, inside and outside the vesicle are described by

the Stokes equations (49,50)

r
vv

vt
¼ V , Thd ; V , v ¼ 0: (14)

The bulk hydrodynamic stress is

Thd ¼ �pI þ h
h
Vv þ ðVvÞy

i
; (15)

where the superscript y denotes transpose.

Equation 14 is a simplified version of the more general

Navier-Stokes equations. First, inertial effects are neglected

because at the length-scale of the cell water is effectively
Biophysical Journal 96(12) 4789–4803
very viscous. Second, the bulk stress has no contribution

from the electric field because there are no excess free bulk

charges. The unsteady term vv/vt can be neglected provided

that the viscous relaxation time, tv ¼ a2r/h, is faster than the

changes in the electric field, i.e., u < t�1
v (51). The linearity

and quasisteadiness of the Stokes equations, and the decou-

pling of the electric and hydrodynamic equations in the bulk,

greatly simplify the solution of the problem.

Far away from the vesicle, the fluid is at rest and the flow

field vanishes, vex / 0. In the absence of bilayer slip and

membrane permeability, the velocity is continuous across

the interface

vin ¼ vex h vs at r ¼ rs: (16)

The interface moves with the normal component of the

velocity of the adjacent fluid (52)

vrs

vt
¼ vs , n: (17)

Membrane permeability can be neglected in the case of

osmotically stabilized vesicles and pore-free membranes,

i.e., membranes in which the electric-field induced tension

does not exceed the poration threshold.

Electromechanical coupling. The vesicle shape is deter-

mined by the balance of electric, hydrodynamic, and

membrane tractions (surface force densities) at the interface

r ¼ rs,

n ,
��

hexThd;ex � hinThd;in
�
þ
�
3exTel;ex � 3inTel;in

��
¼ tmem;

(18)

where flexoelectric bending of the lipid bilayer is neglected

(53,54). For example, at rest, when the electric field is off,

Eq. 18 reduces to the familiar Euler-Lagrange equation

(46), which states that there can be a jump in the hydrostatic

pressure across a membrane due to membrane tractions

pin � pex ¼ 2sH � k
�
4H3 � 4KH þ 2V2

s H
�
; (19)

where k is the bending rigidity, and H and K are the mean

and Gaussian curvatures. In the next section, we discuss

the membrane stresses in more detail.

Membrane mechanics

The pure lipid membrane consists of two sheets of lipid mole-

cules. It stores elastic energy in bending, and dissipates energy

by membrane surface viscosity and intermonolayer friction.

Within the framework of the minimal model (55), the

bending resistance gives rise to a surface force density

tk ¼ �k
�
4H3 � 4KH þ 2V2

s H
�
n: (20)

The surface gradient operator is defined as Vs ¼ Is$V, where

the matrix Is ¼ I – nn represents a surface projection.

The membrane leaflets consist of fixed number of lipids,

which are optimally packed with a fixed area per lipid (under
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moderate stresses). As a result, a membrane element only

deforms but cannot change its area. Under stress, the

membrane develops tension, which adapts itself to the forces

exerted on the membrane to keep the local and total area

constant. Hence, the tension is nonuniform along the inter-

face and varies with forcing. The membrane tension gives

rise to surface force density

ts ¼ 2sHn� Vss; (21)

where s denotes the local membrane tension.

For lipid bilayers in the fluid phase, the lipids are free to

move within the monolayer. Therefore, in contrast to

gel-phase lipid membranes, a fluid bilayer membrane has

no shear-elastic modulus (31). Moreover, the surface

viscosity of lipid bilayers in the fluid phase is relatively

low, hmm ~ 10�9 Ns/m, and its effects are usually negligible.

In addition to surface viscosity, other dissipation mecha-

nisms are drag between the two monolayers (56) and perme-

ation through the membrane. Dissipation by intermonolayer

friction becomes important if bilayer shape changes occur

on a timescale comparable to the lateral lipid redistribution

within the bilayer (56–58). Vesicle deformation occurs on

the electrohydrodynamic timescale, tel ~ 10�3 s (for the

experiments of Aranda et al. (30)). The bilayer slip timescale

is tslip ¼ ba2/KA ~ 0.1 s, where KA ~ 0.1 N/m is the bilayer

stretch modulus and b ~ 108 N.s/m3 is the bilayer slip coef-

ficient (31,59). Based on large separation of timescales, tslip

>> tel, the bilayer slip was not included in the current model.

Membranes become permeable when subjected to submil-

lisecond strong direct current pulses that cause poration

(29,48,60,61); electropermeabilization in AC fields is less

likely (62,63). Pores form when the transmembrane potential

exceeds a critical value, which for a tension-free membrane is

Vc ~ 1 V and decreases with initial tension (28,48). Thus, in

principle, it is possible to reach Vc in a low-frequency AC

field, where Vc ~ 3/2E0a, provided that the electric field

strength is higher than 105 V/m. In the experiments of Aranda

et al. (30), the electric field strengths were lower, 2� 104 V/m,

and vesicles were fluctuating, which implies very low initial

tensions. Hence, in this case, membrane permeation appears

unlikely and we have neglected it in this study. In addition,

the vesicle volume as observed in experiments remained

constant, indicating no leakage through the membrane.

In summary, the external electric energy is stored in the

membrane due to developing tension and bending moments,

and dissipated by viscous friction in the bulk fluid. The bulk

hydrodynamic dissipation prevails because the viscous

relaxation time of the embedding fluids, tv ¼ a2r/h ~ 1 ms,

is much shorter than the timescales associated with dissipa-

tion in the membrane.

Dimensionless parameters

It is more convenient to describe the problem in terms of

nondimensional parameters. Casting equations in dimen-
sionless form helps show the generality of application to

a broad class of situations rather than just one set of dimen-

sional parameters.

Henceforth, bending stresses and tension are normalized

by k/a2; all other quantities are rescaled using hex, 3ex, lex,

a, and E0. The fluid velocity scale is v0 ¼ 3exE0
2a/hex. The

electric and viscous stresses are rescaled by 3exE0
2. Time

and frequency are nondimensionalized with the basic

charging time tc ¼ 3ex/lex.

The electric capillary number compares the shape-preserving

bending stresses to the shape-distorting electric stresses,

Ca ¼ tk

tel

¼ 3exE2
0a3

k
: (22)

The other relevant parameters are the ratios of the electric

properties of inner and outer fluid

L ¼ lin

lex

; S ¼ 3in

3ex

(23)

and the viscosity ratio

c ¼ hin

hex

: (24)

The dimensionless membrane conductivity and capacitance

per unit area are

Gm ¼
lmm

xlex

; Cm ¼
3mm

x3ex

; (25)

where the dimensionless membrane thickness is x ¼ h/a.

We estimate that Ca ~ 103 >> 1, from the typical values

discussed at the end of The Physical Picture and Characteristic

Timescales, which correspond to the experiments of Aranda

et al. (30); the dielectric constants and viscosity ratios are S,

c ~1, but the conductivity ratio vary between 10�3 and 100.

SOLUTION FOR SMALL DEFORMATIONS

In a coordinate system centered at the vesicle, the radial posi-

tion rs of the vesicle interface is described by

rs ¼ 1 þ f ðq; fÞ; (26)

where f is the deviation of vesicle shape from a sphere. For

a nearly spherical vesicle, f<< 1. In this case, the exact posi-

tion of the interface is replaced by the surface of a sphere of

equivalent volume, and all quantities that are to be evaluated

at the interface of the deformed vesicle are approximated

using a Taylor series expansion. The solution for electric

and flow fields is derived as a regular perturbation expansion

in some small parameter, e.g., the excess area.

In this study, we perform the leading order analysis.

Accordingly, the electric and hydrodynamic fields are evalu-

ated about a sphere. First, we determine the electric field and

the electric tractions (surface force density) exerted on

the membrane. Second, we determine the hydrodynamic

Biophysical Journal 96(12) 4789–4803
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tractions needed to satisfy the force balance Eq. 18 and the

corresponding velocity field. Finally, we use the kinematic

condition Eq. 17 to find the shape evolution.

In Eq. 26, the function f representing the perturbation of

the vesicle shape depends only on angular coordinates.

Thus, it is expanded into series of scalar spherical harmonics

Yjm given by Eq. 46:

f ¼
XN
j¼ 2

Xj

m¼�j

fjmYjm: (27)

Solutions for the electric field are growing and decaying

harmonics, which derive from V(rjYjm) and V(r�j�1Yjm).

The uniform applied electric field along the z direction,

defined by Eq. 1, is described by the j ¼ 1 harmonic

EN ¼ dNVðrY10Þ ; dN ¼
ffiffiffiffiffiffi
4p

3

r
: (28)

Accordingly, the induced electric field has j ¼ 1, m ¼ 0

symmetry.

Electrostatic field and stresses

The model for the electric field is based on the classic work

by Schwan (44), in which it is shown that an external AC

electric field induces a potential across the membrane of

a spherical shell (64),

DF ¼ VmðuÞ cos q; (29)

where

VmðuÞ ¼
3

2

1

1 þ ðGm þ iuCmÞð1=L þ 1=2Þ: (30)

The transmembrane potential is very sensitive to the

membrane thickness. Fig. 3 a illustrates the variation of

the transmembrane potential with frequency for a vesicle

with a fixed size and two values of the membrane thickness,

corresponding to a giant unilamellar lipid vesicle and a poly-

mersome. For a simple fluid-fluid interface (a drop, i.e.,

x ¼ 0), the transmembrane potential is zero.

The electric tractions exerted on the membrane have radial

and tangential components,

tel ¼ tel
r ½1 þ 3cosð2qÞ�br þ tel

q sinð2qÞbq: (31)

In terms of the electric field, the electric pressure can be

written as

tel
r ¼

1

2

h�
Eex

r

�2�
�
Eex

q

�2�S

�

Ein
r

�2�
�
Ein

q

�2
�i
; (32)

and the tangential electric force is

tel
q ¼ Eex

q Q þ SEin
r VmðuÞ sin q; (33)

where we have used the definition of surface charge Q given

by Eq. 9. The amplitudes of the electric tractions, tr
el and
Biophysical Journal 96(12) 4789–4803
tq
el, depend only on the electric properties of the media.

Their expressions are given by Eqs. 51 and 52.

The electric stresses are complicated functions of the

frequency u as illustrated in Fig. 4, a and b. We can distin-

guish three regimes:

Low frequencies, u < u1

In this case, the membrane shields the vesicle interior and the

electric field inside zero, as seen from Fig. 3 b. The electric pres-

sure is positive at the poles, and negative at the equator, thus

pulling the vesicle into a prolate shape. The tangential electric

stress is zero everywhere on the surface, because both induced

charge and internal electric field are zero. In contrast, the

tangential electric stress at a simple fluid-fluid interface, i.e.,

zero-membrane-thickness, is nonzero even at low frequencies

(see Eq. 54). For conductivity ratio L< 1, the electric pressure

a

b
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m
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br
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e 
po
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nt

ia
l V

m

dimensionless  field frequency ω

dimensionless  field frequency ω

in
ne

r e
le

ct
ric

 fi
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d 
Re

[P
in

]

FIGURE 3 (a) Transmembrane potential at the poles q ¼ 0, p calculated

from Eq. 30, and (b) interior electric field calculated from Eq. 49 for a spheri-

cal shell with different membrane thickness, x ¼ 5 � 10�4 and x ¼ 10�3, in

a uniform AC electric field. L ¼ 0.5, S ¼ 1.001, Cm ¼ 0.025/x, Gm ¼ 0.
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changes its sign and the tangential electric traction becomes

significant above a frequency u1 given by (8,44)

u1 ¼
Gm

Cm

þ 2L

CmðL þ 2Þ; (34)

which reduces to 1/tcap (Eq. 5), if the membrane is noncon-

ducting.

Intermediate frequencies, u1 < u < u2

In this frequency window, the membrane capacitor becomes

short-circuited and the vesicle interior participates in the

conduction process. The onset of decrease in the transmem-

brane potential and increase in the interior electric field coin-

cides with the appearance of tangential electric tractions, as

seen in Figs. 3 and 4. The tangential electric stress is mainly
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FIGURE 4 Electric tractions on the membrane as a function of the

frequency for two conductivity ratios, L ¼ 0.5 and L ¼ 1.5. (a) Electric

pressure calculated from Eq. 51; (b) tangential electric force calculated

from Eq. 52. The values of the other physical parameters are S ¼ 1.001,

Cm ¼ 0.025/x, and Gm ¼ 0. The electric tractions in the case of a droplet

(the zero-membrane-thickness limit x ¼ 0) are also shown for comparison.
due to the free charges on the membrane (38) (see Eq. 33).

Because of the different conductivities of the inner and outer

fluids, charges accumulate at different rates on the membrane

physical surfaces. As a result, charge densities on the inner

and outer membrane surfaces can become imbalanced, which

gives rise to a nonzero effective interfacial charge density as

shown in Fig. 5. The effective charge is zero at low frequen-

cies because the membrane capacitor is fully charged, having

equal charge densities on the inner and outer membrane

surface, and at high frequencies because of insufficient time

for interface charging.

High frequencies, u > u2

The inverse Maxwell-Wagner polarization time, Eq. 3,

defines a critical frequency

u2 ¼
L þ 2

S þ 2
; (35)

above which tangential stress starts to decrease. It vanishes at

very high frequencies, where all media behave as perfect

dielectrics. In this frequency regime, the electric pressure is

small, but positive with magnitude ~(S� 1)2/(Sþ 2)2, which

leads to small prolate deformation.

Hydrodynamic field and vesicle deformation

The stress balance at the interface Eq. 18 shows that the elec-

tric tractions need to be compensated by membrane and

hydrodynamic forces. The latter can be found using the

general solution for a nearly spherical vesicle subject to an

external field (46,65–67). Details of the solution are pre-

sented in the Supporting Material.

The vesicle area, A, exceeds the area needed to enclose the

volume of the interior fluid, 4pa2. At rest, the excess area is

redistributed among all shape modes

FIGURE 5 Absolute value of the amplitude of the interfacial charge

density at the poles q ¼ 0, p. Notation and parameter values are the same

as in Fig. 4.
Biophysical Journal 96(12) 4789–4803
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D ¼ A=a2 � 4p ¼
XN
j¼ 2

Xj

m¼�j

ð�1Þm

2
ðj � 1Þðj þ 2Þfjmfj�m:

(36)

Therefore, to accurately describe vesicle deformation, in

general, we need the evolution equations for all shape modes.

These are derived in Vlahovska and Gracià (65) (see also the

Supporting Material) and have the general form of

vfjm

vt
¼ Cjm þ Ca�1ðG1 þ shG2Þfjm þ O

�
f 2
�
: (37)

The first term describes the distortion of the vesicle shape by

the electrohydrodynamic flow. The term including Ca is asso-

ciated with shape relaxation driven by the membrane stresses.

The coefficients Cjm, G1, and G2 are listed in the Supporting

Material. The effective tension sh depends on the vesicle

shape, which in turns depends on the applied electric field.

In general, the apparent area of a vesicle, A, is lower than

its true area, A, because of suboptical fluctuations in the

shape modes. For example, a quasispherical vesicle at equi-

librium is characterized by a zero apparent area, i.e., D ¼ 0.

However, even though the membrane in inextensible, the

vesicle can deform and increase its apparent area due to flat-

tening of the shape undulations. This leads to an increase in

the membrane tension (42)

sh ¼ s0 exp

�
8pk

kBT

�
AðtÞ
4pa2

� 1

�
¼ s0 exp

�
2kD

kBT

�
; (38)

where s0 is the initial tension in the membrane.

In the next section, we simplify the theory for the case of

vesicle electrodeformation induced by a uniform AC electric

field.

RESULTS

Deformation of a quasispherical vesicle

When the electric field is turned on, it generates electrohy-

drodynamic flow with the same symmetry as the electric

stresses. The corresponding fluid velocity, which is respon-

sible for the vesicle deformation, is given by

CelhC20 ¼ 8

ffiffiffiffi
p

5

r
6tel

r � tel
q

23c þ 32
; (39)

where the electric stresses are given by Eqs. 51 and 52, and

the viscosity parameter c is defined by Eq. 24. Since electric

stresses directly affect only the ellipsoidal j ¼ 2, m ¼ 0

mode, the most important contribution to the vesicle defor-

mation comes from the ‘‘elongational’’ f20 mode. Moreover,

because the shape modes are coupled through the area

constraint Eq. 36, the area stored in the j s 2 modes is trans-

ferred into the ellipsoidal f20 mode. The maximum possible

vesicle deformation corresponds to elongation where all

excess area is stored in the f20 mode
Biophysical Journal 96(12) 4789–4803
f max
20 ¼ 5

ffiffiffiffi
D

2

r
; (40)

where a positive sign corresponds to a prolate deformation.

The shape evolution strongly depends on the effective

tension sh. For a quasispherical vesicle, using the relation

between excess area and shape modes (Eq. 36), and

including only the dominant contribution from the f20

mode, we can rewrite Eq. 38 as

sh ¼ s0 exp

�
4k

kBT
f 2
20

�
: (41)

Inserting into Eq. 37, we obtain that the shape evolution of

a vesicle in AC electric field is described by the nonlinear

equation:

vf20

vt
¼ Cel � Ca�1

24
h
6 þ exp



4k

kBT
f 2
20ðtÞ

�i
23c þ 32

f20ðtÞ: (42)

At steady state vf20/vt¼ 0, and the stationary vesicle shape is

given by

f20 ¼
ffiffiffi
p

5

r
6tel

r � tel
q

3ð6 þ shÞ
: (43)

The above equation is a generalization of the relation derived

by Kummrow and Helfrich (19). Their model is valid only

for frequencies <u1.

DISCUSSION

The shape evolution obtained from Eq. 42 for several

frequencies is illustrated in Fig. 6 a. We observe that a vesicle

deforms on a hydrodynamic timescale approximated by td ¼
1/Cel. The final steady deformation depends on the strength

of the deforming electric stresses, which decrease with

frequency. The time needed to reach stationary shape

depends strongly on the viscosity contrast between the inner

and outer fluid. Fig. 6 b shows that increasing the viscosity of

the inner fluid slows down the shape evolution. The viscosity

effect may become important in the electrodeformation of

red blood cells, which are characterized by c ~ 10.

The steady shape of a vesicle in AC electric field is calcu-

lated by evaluating Eq. 43. Fig. 7 illustrates the steady shapes

of vesicles in the AC field as a function of frequency for

different conductivity ratios. The theory predicts that the

type of deformation, prolate or oblate, is determined

primarily by the frequency and the conductivity ratio. At

low frequencies u < u1, the deformation is prolate. For

frequencies u> u1, vesicles are prolate or oblate, depending

on the conductivity ratio. At even higher frequencies, the

deformation becomes again prolate but very small and the

vesicle appears spherical.

Next, we analyze these morphological transitions in more

detail.



Electrodeformation of Vesicles 4797
Prolate-oblate transition for L < 1 at low
frequencies

The transition frequency u1 corresponds to the capacitor

charging time (Eq. 34).

At low frequencies, u < u1, vesicle deformation is due

solely to the positive electric pressure. It is maximal at the

poles (see Eq. 51). The vesicle is pulled apart, and thus,

adopts a prolate ellipsoidal shape.

At u > u1, the tangential electric traction becomes signif-

icant and the electric pressure is negative, as seen from

Fig. 4. The shearing tangential force induces electrohydrody-

namic flow, similar to the one observed with drops (Fig. 1). If

L/S < 1, the flow is directed from the poles to the equator

and the resulting deformation is oblate; if L/S > 1, the

flow is directed from the equator to the poles and the result-

a

b

FIGURE 6 Evolution of the ellipsoidal deformation amax/a, calculated

from Eq. 42, of a quasispherical vesicle upon application of a uniform AC

electric field. (a) For frequencies u ¼ 0.01, 0.1, 1, and same viscosity

ratio c ¼ 1. (b) For viscosity ratios c ¼ 0, 1, 5, and the same AC field

frequency u ¼ 0.01. The values of the physical parameters are L ¼ 1.5,

x ¼ 5 � 10�4, S ¼ 1.001, Gm ¼ 0, and Cm ¼ 50. Ca ¼ 6837 corresponds

to E0 ¼ 2 � 104V/m, hex ¼ 10�3 Pa.s, k ¼ 10 kBT, and a ¼ 10 mm.
ing deformation is prolate. Therefore, prolate-oblate transi-

tion is possible only if L/S < 1. In experiments with vesicles

(30,32), the inner and outer fluids are sucrose and glucose,

which have a similar dielectric constant, S ~ 1. Oblate shapes

were reported for conductivity ratio < 1, in agreement with

the condition L/S < 1. In the case of biological cells, the

difference between the dielectric constants of the cytosol

and the cell environment is also small, and therefore similar

deformation behavior is expected. In the case of drops, the

electrohydrodynamic flow persists for as long as the electric

field is applied because only viscous stresses can balance the

tangential electric surface force. In contrast to drops, the

electrohydrodynamic flow in vesicles is not sustained. It

stops when the vesicle reaches steady deformation because

the membrane tension counteracts the electric tangential

force.

The capacitor charging time decreases with the size of the

vesicle. Therefore, the smaller the vesicle, the higher the

transition frequency. For a nanometer-size vesicle, this

frequency is in the MHz range. Thus, nanovesicles are ex-

pected to deform only into prolate ellipsoids when subjected

to AC fields with frequency less than a MHz, or for direct

current pulses with length longer than 1 ms, which is in

agreement with experimental observations (68).

Comparison with experiment

Figs. 8 and 9 demonstrate that our theory is consistent with

the experiment. Our model captures the morphological tran-

sitions of vesicles in AC fields, in particular, the prolate-

oblate one at low frequencies. The theory also shows that

vesicles should be spherical at high frequencies as experi-

mentally observed. In addition, it correctly predicts the effect

of conductivity on the type of deformation, which has not

been reported by other models.
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FIGURE 7 Ellipsoidal deformation amax/a of vesicles in uniform AC elec-

tric field as a function of the dimensionless frequency for two conductivity

ratios L ¼ 0.5 and L ¼ 1.5. Other parameters are the same as in Fig. 6.
Biophysical Journal 96(12) 4789–4803
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Fig. 8 shows the dependence of the vesicle deformation on

the field frequency and conductivity ratio. We have calcu-

lated the vesicle half-length along the field direction

amax=a ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffi
5=4p

p
f20 from Eq. 43, using the initial

membrane tension s0 as the only fitting parameter. The choice

of s0 as an adjustable variable is reasonable, considering that

the equilibrium membrane tension cannot be controlled

experimentally and it is not known a priori. The theoretical

vesicle shapes are in a good agreement with the experimental

data, albeit the onset of the decrease in the vesicle deformation

is overestimated. The fitted values for the initial tensions are

of the same order of magnitude as in earlier work (19).

Some of the discrepancy between theory and experiment

in the MHz frequency range could be ascribed to the omis-

sion of unsteady fluid motion, conductivity dispersion in

the bulk electrolyte, or effects due to electric double layers.
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FIGURE 8 Comparison between theory and the experimental data of Ara-

nda et al. (30). (a) Prolate deformations. The fitted initial tensions are s0 ¼
20,000 (corresponding to 1.1 � 10�3 mN/m) for L ¼ 1.7 and s0 ¼ 3000

(1.6 � 10�4 mN/m) for L ¼ 4.3. (b) Oblate deformations. The fitted initial

tensions are s0 ¼ 1 (5.6 � 10�8 mN/m) for L ¼ 0.4 and s0 ¼ 100 (2.5 �
10�5 mN/m) for L ¼ 0.5.
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We have used a quasisteady approximation, tantamount to

ignoring rvv/vt in the equations of motion(Eq. 14). Unsteady

fluid motion is slower than a fully developed quasi-steady

flow, resulting in weaker deforming stresses. Accordingly,

vesicle deformation under unsteady flow conditions would be

smaller. A quick estimate shows that temporal fluid acceleration

becomes important at frequencies u >> h/ra2 ~ 10 kHz (51).

The frequency at which vesicle deformation begins to

decrease is also comparable to the inverse of the shortest

of the interior and exterior fluid bulk charging times, tc ¼
min{tc, in, tc, ex}. The charging time tc is also interpreted as

the time for the polarization of the screening cloud around

an ion (43). If u > 2p/tc, the ion atmosphere becomes dis-

torted, which leads to increase in the conductivity (Debye-

Falkenhagen effect). If tc ¼ tc, in, the increase of inner fluid

conductivity could possibly decrease the tendency for oblate

deformations.

Another possible explanation for the fact that at high

frequencies the observed vesicle deformation is smaller

than the theoretically predicted one is that the theoretical

membrane tension is underestimated.

First, in the current model, the membrane tension

increases solely due to flattening of the shape fluctuations

by the electric forces. We have included only the contribu-

tion from the f20 mode in the apparent excess area. However,

due to the area constraint (see Eq. 36), a decrease of f20

should be compensated by an increase in the amplitudes of

the other shape modes. If all modes are accounted for, the

apparent excess area would be larger and hence the tension

would be higher (see Eq. 38).

Second, electric double layers (EDLs) give rise to an addi-

tional increase of the membrane tension (25,69). The electric

field acting on the charges in the Debye layers on the interior
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FIGURE 9 Comparison between theory (line) and the experimental data

(symbols) of Aranda et al. (30) assuming constant tension. The theoretical

line is calculated from Eq. 43 for L ¼ 4.5 with sh ¼ 40,000 (corresponding

to 5.3 � 10�3 mN/m), and for L ¼ 0.4 with sh ¼ 55,000 (sh ¼ 3 �
10�3 mN/m).
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and exterior sides of the membrane creates extensional

stresses near the membrane that act to reduce membrane

area, which is equivalent to increasing the tension (69).

The calculation of the EDL contribution to the membrane

tension is a complicated problem that has been solved only

for a planar membrane (26,69). Accounting for this effect

in the case of a vesicle is a challenging task that we postpone

to future study. At this time we assume that the EDL tension

is constant. Fig. 9 illustrates the frequency dependence of

vesicle shape for L ¼ 4.5 and L ¼ 0.4 computed from Eq.

43 with sh as an adjustable parameter corresponding to the

EDL tension. The somewhat surprising agreement between

theory and experiment prompts further investigation.

Third, we focus on the prolate-oblate transition at lower

frequencies, which previously eluded theoretical interpreta-

tion but is correctly captured by our theoretical model.

Fig. 10 shows the experimentally measured transition

frequency u1 for 28 vesicles with different sizes and conduc-

tivity conditions. The theoretically predicted dependence of

the transition frequency on the conductivity ratio agrees

very well with the experimental data. Note that the scatter

in the data is due to variations in vesicle sizes and conduc-

tivity conditions. Differences in the vesicle size affect the

dimensionless membrane thickness x, and therefore we

have plotted u1(L) for three values of x corresponding to

the average, the smallest, and the largest vesicle radii.

Oblate-prolate transition for L < 1 at high
frequencies

At high frequencies u >> u1, the transmembrane potential

vanishes, as seen in Fig. 3. The electric tractions are given by

the zero-thickness results from Eqs. 53 and 54. The forcing

term Cel in the shape evolution Eq. 42 changes sign at

a frequency

FIGURE 10 Prolate-oblate transition frequency for different conductivity

ratios L. The points are experimental data (30,32) for 28 vesicles with

different size; the fluids conductivities are ~10�4 S/m. The solid line is

the theoretical prediction using x ¼ 10�4 corresponding to vesicle radius

a ¼ 50 mm. The bottom dashed line is calculated using x ¼ 2 � 10�5 and

the top dashed line is calculated using x ¼ 5 � 10�4 . The basic charging

time is estimated to be tc ¼ 10�7 s.
U2 ¼
"

4S� ðL þ 1Þ2

ðS� 1Þ2

#1
2

: (44)

Correspondingly, the vesicle deformation changes from oblate

to prolate at this frequency. The transition frequency U2

becomes very large when the dielectric constants of the fluids

are comparable. For vesicles filled with sucrose and suspended

in glucose solutions, this frequency is ~1 GHz, which is in the

frequency range where electric tractions have already become

too small to deform the vesicle. Thus, this oblate-prolate transi-

tion was not observed in the experiments of Aranda et al. (30);

instead, the vesicles become spherical. Thus far, the prolate-

oblate transition has been reported only for drops (70).

If U2 < u1, the oblate deformation would be impossible.

This situation arises if the membrane becomes highly con-

ducting, e.g., because of poration. Another possibility is

a thick membrane or small vesicle with

h

a
>

ðL þ 2Þ2Sm

ðS þ 2Þð2L þ GmðL þ 2ÞÞ; (45)

where Sm ¼ 3mm/3ex. For a typical bilayer thickness of 5 nm,

this condition holds for vesicle size below 100 nm. This

prediction is in agreement with experimental studies of nano-

sized vesicles (68) that have reported only prolate deforma-

tions.

The oblate-prolate transition is independent of membrane

properties; it is analogous to the one observed with drops

(70,71). It is also independent of the viscosity ratio because

the electrohydrodynamic flow stops at steady state due to the

interface immobilization by gradients in the membrane tension.

The effective dipole theory does not predict the
prolate-oblate transition

The effective dipole theory, summarized in Appendix C,

models the cell as a sphere with effective permittivity. The

theory successfully explains the dielectrophoresis and elec-

trorotation of cells, because it correctly describes the pertur-

bation due to the cell in the exterior electric field. However,

the internal electric field is not physical, which leads to incor-

rect interior Maxwell stress and electric force distribution on

the membrane. Accordingly, the predicted deformation is

oblate at low frequencies (22), which is at odds with the

experimental observations with vesicles (30).

Fig. 11 compares the predictions of our model and the

effective dipole theory for the electric tractions. It shows

that the two models agree at frequencies u > u1, where

the transmembrane potential has vanished. At low frequen-

cies, where the field inside the vesicle is zero, the effective

dipole theory would correctly predict the electric tractions

if only the contribution from the exterior electric field is

taken into account. However, at intermediate frequencies,

where the vesicle interior participates in the conduction
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process and the transmembrane potential is still significant,

i.e., u ~ u1, the effective dipole theory diverges from our

model as well as experimental observations (30).

CONCLUSIONS AND OUTLOOK

We have developed a theory that explains the observed

morphological transitions of vesicles in a uniform AC elec-

tric field, in particular, the shape dependence on the field

frequency and conductivity ratio between the inner and outer

fluids. Prolate deformations at low frequencies have purely

dielectric origin and result from electric pressure due to

polarization charges pulling the vesicle at the poles. Oblate

deformations, however, result from induced free surface

charges, which cause negative pressure and transient electro-

hydrodynamic flow.

The prolate-oblate transition at low frequencies depends

on the membrane capacitance and conductance. At high

frequencies, electric stresses become negligible and do not

affect the vesicle equilibrium quasispherical shape. The
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FIGURE 11 Electric tractions according to our model (solid line), the drop

model (short-dashed line), the effective dipole theory (long-dashed line), and

the only exterior field contribution in the effective dipole theory (dot-dashed

line). (a) Electric pressure; (b) tangential traction component directed to the

pole. Parameters are: D ¼ 0.5, L ¼ 1.5, x ¼ 5 � 10�4, Gm ¼ 0, Cm ¼ 50,

and Ca ¼ 684.
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theory also predicts a high-frequency oblate-prolate transi-

tion, which is analogous to the one observed with drops: it

is independent of the membrane electric properties and

depends only on the conductivities of inner and outer fluids.

The transition frequency, however, is not given by the

Maxwell-Wagner polarization time, but is determined by

electrohydrodynamics.

We have considered the problem of vesicle electrodefor-

mation from a mechanical point of view. In this approach,

vesicle shape is determined by balancing forces exerted

on the interface, not by minimizing the bending and electro-

static energies as in earlier work. Thus, our formalism can

be applied to study transient vesicle electrodeformation.

Furthermore, it can be easily extended to electric fields of

arbitrary symmetry as well as to situations in which both

external electric and flow fields are present.

Our current theory is a first step in a systematic study of

the electrohydrodynamics of deformable cells and, as such,

some potentially important effects are neglected.

First, our treatment assumes that all media are electrically

homogeneous and is based on solutions of Laplace’s equa-

tion. This approach requires that the Debye length of the

media is small compared to the radius of the vesicle or the

thickness of the membrane. Thus, our theory might break

down at low conductivities and frequencies. Electric double

layers may also increase the membrane tension (25).

Second, the model does not include shear elasticity of the

membrane, which is essential in the mechanics of the red

blood cell (15).

Third, the membrane is assumed to be nonpermeable to

ions. However, at low frequencies, the duration of the appli-

cation of the electric field may be sufficient to porate the

membrane (62). An electric current due to ion movement

through field-induced pores would affect the electric field

(27), and therefore vesicle shapes.

Last, but not least, the conductivity of the electrolyte solu-

tions may exhibit frequency dispersion. Electrokinetic

effects, the role of shear elasticity, membrane poration, and

membrane charge represent interesting and challenging

problems. We hope that our work will stimulate future

research on these topics.

APPENDIX A: LIST OF SYMBOLS

Symbol Description

Subscript r Radial

Subscript q Tangential

Sub/superscript ‘‘el’’ Electric

Sub/superscript ‘‘hd’’ Hydrodynamic

Sub/superscript ‘‘mm’’ Membrane

Sub/superscript ‘‘in’’ Interior

Sub/superscript ‘‘ex’’ Exterior

Superscript * Complex conjugate

Re[.] Real part of [.]
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APPENDIX B: SPHERICAL HARMONICS

The normalized spherical scalar harmonics are defined as (72)

Yjmðq;4Þ ¼
�

2j þ 1

4p

ðj � mÞ!
ðj þ mÞÞ!

1
2

ð�1ÞmPm
j ðcos qÞeim4;

(46)

where (r, q, 4) are the spherical coordinates, and Pj
m(cos q) are the Legendre

polynomials. For example,

Y10 ¼
3ffiffiffiffiffiffi
4p
p cos q: (47)

APPENDIX C: ELECTROSTATIC FIELD AND
STRESSES FOR A SPHERICAL SHELL

Our model: a sphere with interfacial capacitance
and conductivity

Schwan (44) and Grosse and Schwan (64) have solved the problem for the

electric field about a spherical shell with radius a and shell thickness h to

obtain Eq. 8 for the potential difference between the inner and outer shell

surfaces. Assuming a very thin shell h/a << 1, we can approximate the

membrane with a two-dimensional interface that possesses capacitance.

Symbol Description

Im[.] Imaginary part of [.]

a Vesicle radius

Cm Membrane capacitance

Ca Capillary number

E Electric field

fjm Shape deformation parameter

Gm Membrane conductivity

h Membrane thickness

H Mean curvature

p Pressure

S Permittivity ratio

t Time

T Bulk stress

v Fluid velocity

Vm Transmembrane potential

x ¼ h/a Dimensionless membrane thickness

Yjm Spherical harmonic

h Viscosity

r Density

l Conductivity

3 Permittivity

L Conductivity ratio

c Viscosity ratio

u1 Frequency of the prolate-oblate transition

u2 Frequency corresponding

to the inverse

Maxwell-Wagner polarization time

U2 Frequency of the oblate-prolate transition

F Electric potential

t Tractions

s Membrane tension

k Bending rigidity

D Excess area
Accordingly, the spherical shell is approximated by a sphere with a discon-

tinuous potential at the interface.

Solving Eq. 7 with the boundary conditions from Eqs. 8–10 leads to

Fex ¼ �½r þ Pexr�2�expðiutÞcos q;

Fin ¼ �Pinr expðiutÞcos q:
(48)

where

Pex ¼ dNð�kin þ kexÞþ kinVm

kin þ 2kex
;

Pin ¼ dNkex
3�2Vm

kin þ 2kex
;

(49)

and k denote the dimensionless complex conductivities of the inner and outer

fluids

kin ¼ L þ iuS; kex ¼ 1 þ iu: (50)

The tractions are computed from the Maxwell stress tensor. The radial (pres-

sure) component is given by

tel
r ¼

1

32p

�
� 2
�
t2

1 þ t2
2

�
S þ 5t2

3 � 2dNt3 þ 5t2
4

þ 2ðdNÞ2
�
; (51)

and the tangential (shearing) component is

tel
q ¼

3

8p

��
t2

1 þ t2
2

�
S þ 2t2

3 þ ðdNÞt3 þ 2t2
4 � ðdNÞ2

�
;

(52)

where t1 ¼ Re[Pin], t2 ¼ Im[Pin], t3 ¼ Re[Pex], and t4 ¼ Im[Pex]. Re[ ] and

Im[ ] denote real and imaginary part. Taking the zero-thickness limit, x ¼ 0,

our solution reduces to the result for a spherical drop (70):

tel;drop
r ¼ 3

8

�
1 þ L2 � 2S þ ðS� 1Þ2Su2

�
�ð2 þ SÞ2

�
u2 þ u2

2

��1
; (53)

t
el;drop
q ¼ �9

2
ðL� SÞð2 þ SÞ2

�
u2 þ u2

2

��1
; (54)

where u2 is given by Eq. 35

The effective charge density is calculated from Eq. 9 as

Qðu; tÞ ¼ qcðuÞ cosðutÞ þ qsðuÞ sinðutÞ; (55)

where

qsðuÞ ¼ 2t4 þ St2; qsðuÞ ¼ dN � 2t3 � St1: (56)

The frequency dependence of the charge density can be cast into the form

Qðu; tÞ ¼ QðuÞ cosðut þ jÞ; (57)

where the amplitude is QðuÞ ¼ ½qs þ qc�
1
2, and the phase shift is j ¼ qs/qc.

The effective sphere model

The dipole theory models the cell as a sphere with an effective permittivity

(12,13)
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keff
in ¼ kin

�
ð1� xÞ�3þ 2

kin � kmm

kin þ 2kmm


�
�
ð1� xÞ�3� kin � kmm

kin þ 2kmm

�1

; (58)

where

kin ¼ L þ iuS; kmm ¼ Lmm þ iuSmm: (59)

The electric field is described by an electric potential

Fex ¼ �dN

"
r þ r�2

�
� keff

in þ kex

�
keff

in þ 2kex

#
cos q;

Fin ¼ �rdNkex

3

keff
in þ 2kex

cos q;

(60)

where a continuity of the potential across the interface is assumed.

SUPPORTING MATERIAL

Supporting text, equations, and references are available at http://www.

biophysj.org/biophysj/supplemental/S0006-3495(09)00785-1.

P.V. thanks Thomas Powers and Margarita Staykova for stimulating discus-

sions.
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1 Solution of the hydrodynamic problem

Here we outline the leading-order solution for the velocity field and hydrodynamic stresses. In this
case, all quantities are evaluated on a sphere. More details can be found in Refs. (1–4).

Velocity fields are described using basis sets of fundamental solutions of the Stokes equations
appropriate for spherical geometry (5), u±jmq, defined in Section 3:

vex(r) =
∑
jmq

cjmqu−jmq(r) , vin(r) =
∑
jmq

cjmqu+
jmq(r) . (1)

∑
jmq

≡
∞∑
j=2

j∑
m=−j

2∑
q=0

(2)

The velocity field contains only q = 0, 2 due to the axial symmetry. The local area conservation
implies that the velocity field at the interface is solenoidal (1)

∇s · v = 0 . (3)

Therefore the amplitudes of the velocity field Eq. 1 are related

cjm0 =
2√

j(j + 1)
cjm2 . (4)

The component of velocity that is normal to the interface, cjm2, is determined using the stress
balance (Eq. 18 in the manuscript text), which in terms of spherical harmonics reads

δj2δm0τ
el
jmq + τhd,ex

jmq − χτ
hd,in
jmq = τmm

jmq . (5)

Tangential stresses correspond to the q = 0 component, and the normal stresses - to q = 2. δij
is the Kronecker delta function. The hydrodynamic tractions are given by Eq. 30–Eq. 33. The
electrical tractions are given by (Eq. 31 in the manuscript text), which is recast in the form

τ el = 8
√
π

5
τ el
r y202(θ, φ)− 2

√
2π
15
τ el
θ y200(θ, φ) . (6)

The membrane tractions are (1, 2)

τmm
jmq = Ca−1(τκjmq + τσjmq) + χsτ

s
jmq . (7)

where Ca is the capillary number and χs = ηmm/ηa is a surface viscosity parameter. We have
included the membrane viscous stresses for the sake of completeness. The surface viscosity of lipid
bilayers in the fluid phase is relatively low, ηmm ∼ 10−9Ns/m, and its effects are usually negligible.
Surface viscous effects become important in bilayers assembled from polymers (polymersomes),
where the membrane viscosity ηmm ∼ 10−6Ns/m (6, 7).

The bending contribution to the membrane traction is

τκjm2 = j(j + 1) (j − 1) (j + 2) fjm , τκjm0 = 0 , (8)

1



the stresses due to membrane tension are

τσjm2 = 2σjm + σ0 (j − 1) (j + 2) fjm , τσjm0 = −
√
j(j + 1)σjm , (9)

and the surface viscous stresses have only in-plane shearing component

τ sjm2 = 0 , τ sjm0 = 2 (j − 1) (j + 2) [j(j + 1)]−1/2fjm . (10)

The non-uniform part of the membrane tension, σjm, is determined from the tangential component
of the stress balance Eq. 5, q = 0,

σjm = Ca

[
τ el
jm0√

j(j + 1)
+ cjm2

2 + j + (j − 1)(χ+ 2(j + 2)χs)
j(j + 1)

]
. (11)

It is then substituted into the normal component of the stress balance Eq. 5, q = 2, to obtain the
normal velocity cjm2

cjm2 = Cjm + Ca−1(Γ1 + σ0Γ2)fjm , (12)

where
Cjm = −

√
j(j+1)

d(χ,χs,j)

[
2τ el
jm0 +

√
j(j + 1)τ el

jm2

]
, (13)

Γ1 = −(j + 2)(j − 1)[j(j + 1)]2d(χ, χs, j)
−1 , (14)

Γ2 = −(j + 2)(j − 1)j(j + 1)d(χ, χs, j)
−1 , (15)

and
d(χ, χs, j) = (4 + 3j2 + 2j3) + (−5 + 3j2 + 2j3)χ+ 4(−2 + j + j2)χs . (16)

Finally, the motion of the interface is determined from the kinematic condition (Eq. 17 in the
manuscript text)

∂fjm
∂t

= cjm2 at r = 1 . (17)

Substituting cjm2 in Eq. 17 yields the evolution equation for the shape parameters (Eq. 37 in the
manuscript text).

The normal velocity Eq. 12 and the shape evolution Eq. 17 include the yet unknown isotropic
membrane tension. It is expressed in terms of the shape modes and other known parameters in the
problem using the area constraint (2)

σ0 = −
∑
jm a(j)

[
Cjmf

∗
jm + Ca−1Γ1fjmf

∗
jm

]
Ca−1∑

jm a(j)Γ2fjmf∗jm
. (18)

The complicated dependence of the tension on the shape modes makes the shape evolution equations
nonlinear.

In order to clarify the physical significance of the isotropic tension, let us consider the particular
case when only the ellipsoidal deformation modes, j = 2, are present. Eq. 18 simplifies to

σ0(t) = −6 + CaC20
32 + 23χ+ 16χs

12
f20(t) (19)

where we have emphasized that the time dependent shape modes give rise to time-dependent
membrane tension. We see that the tension varies with deformation. At rest, the tension of a
quasi-spherical vesicle is negative (8) and increases with forcing. Once all excess area is transferred
to the f20 mode, the tension increases with the field strength Ca as

σ0 ≈ CaC20
(32 + 23χ+ 16χs)

√
2

12
∆−1/2 (20)

Similar behavior is observed with vesicles in shear flow (1).
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2 Spherical harmonics

The normalized spherical scalar harmonics are defined as (9)

Yjm(θ, ϕ) =
[

2j+1
4π

(j−m)!
(j+m)!

] 1
2 (−1)mPmj (cos θ)eimϕ, (21)

where r̂ = r/r, (r, θ, ϕ) are the spherical coordinates, and Pmj (cos θ) are the Legendre polynomials.
For example

Y10 =
√

3
4π

cos θ . (22)

The vector spherical harmonics relevant to our study are defined as (10)

yjm0 = [j (j + 1)]−
1
2 r∇ΩYjm , yjm2 = r̂Yjm (23)

where ∇Ω denotes the angular part of the gradient operator. For example

y200 = −
√

15
32π sin(2θ)θ̂, y202 = 1

8

√
5
π [1 + 3 cos(2θ)]̂r (24)

3 Fundamental set of velocity fields

Following the definitions given in Blawzdziewicz et al.(10), we list the expressions for the functions
u±jmq (r, θ, ϕ). The velocity field outside the vesicle is described by

u−jm0 = 1
2r
−j (2− j + jr−2

)
yjm0 + 1

2r
−j [j (j + 1)]1/2

(
1− r−2

)
yjm2 , (25)

u−jm2 = 1
2r
−j (2− j)

(
j

1+j

)1/2 (
1− r−2

)
yjm0 + 1

2r
−j (j + (2− j)r−2

)
yjm2 . (26)

The velocity field inside the vesicle is described by

u+
jm0 = 1

2r
j−1

(
−(j + 1) + (j + 3)r2

)
yjm0 − 1

2r
j−1 [j (j + 1)]1/2

(
1− r2

)
yjm2 , (27)

u+
jm2 = 1

2r
j−1 (3 + j)

(
j+1
j

)1/2 (
1− r2

)
yjm0 + 1

2r
j−1

(
j + 3− (j + 1)r2

)
yjm2 . (28)

On a sphere r = 1 these velocity fields reduce to the vector spherical harmonics defined by Eq. 23

u±jmq = yjmq . (29)

Hence, u±jm0 is tangential, and u±jm2 is normal to a sphere. In addition, u±jm0 defines an irrotational
velocity field.

The hydrodynamic tractions associated with the velocity fields Eq. 1 are (2)

τhd,in
jm0 = (2j + 1)cjm0 − 3

(
j + 1
j

) 1
2

cjm2 (30)

τhd,ex
jm2 = −(2j + 1)cjm0 + 3

(
j

j + 1

) 1
2

cjm2 (31)

τhd,ex
jm0 = 3

(
j

j + 1

) 1
2

cjm0 −
4 + 3j + 2j2

j + 1
cjm2 (32)

τhd,in
jm2 = −3

(
j + 1
j

) 1
2

cjm0 +
3 + j + 2j2

j
cjm2 (33)
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4 Deformation of a prolate vesicle in strong fields

Consider an initially non-spherical, non-fluctuating vesicle. This situation can occur in strong
electric fields, where the vesicle is already maximally deformed and then the field direction is
changed. The evolution to the new stationary shape is no longer described by Eq.42 in the main
text because the tension is no longer in the entropic regime. The effective tension has to be
determined self-consistently along with the field-induced changes in shape to keep the total area
constant (2), as discussed in Section 1 of the Supplementary material, see Eq. 19. The leading
order vesicle electrohydrodynamics becomes non–linear in contrast to the corresponding results for
drops and capsules (11–13). This feature of non-equilibrium vesicle dynamics has been noted by
several authors in relation to vesicle dynamics in shear flow (2, 4, 14).

Vesicle deformation is approximated by

∂f20

∂t
= Cel(1− 2∆−1f2

20)
∂f2m

∂t
= −2Cel∆−1f20f2m (34)

where the dot denotes time derivative. The modes f2m are slaved to the f20, which is forced to
change by the electric field. Eq. 34 can be integrated to yield

f20(t) = δ tanh

[
Cel

δ
t+ tanh−1

(
f20(0)
δ

)]
. (35)

This equation shows that the maximum possible deformation is

δ =

√
∆
2
. (36)

.
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